Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.12.22281016

ABSTRACT

BackgroundThe relationship between prevalence of infection and severe outcomes such as hospitalisation and death changed over the course of the COVID-19 pandemic. The REal-time Assessment of Community Transmission-1 (REACT-1) study estimated swab positivity in England approximately monthly from May 2020 to 31 March 2022. This period covers widespread circulation of the original strain, the emergence of the Alpha, Delta and Omicron variants and the rollout of Englands mass vaccination campaign. MethodsHere, we explore this changing relationship between prevalence of swab positivity and the infection fatality rate (IFR) and infection hospitalisation rate (IHR) over 23 months of the pandemic in England, using publicly available data for the daily number of deaths and hospitalisations, REACT-1 swab positivity data, time-delay models and Bayesian P-spline models. We analyse data for all age groups together, as well as in two sub-groups: those aged 65 and over and those aged 64 and under. ResultsDuring 2020, we estimated the IFR to be 0.67% and the IHR to be 2.6%. By late-2021/early-2022 the IFR and IHR had both decreased to 0.097% and 0.76% respectively. Continuous estimates of the IFR and IHR of the virus were observed to increase during the periods of Alpha and Deltas emergence. During periods of vaccination rollout, and the emergence of the Omicron variant, the IFR and IHR of the virus decreased. During 2020, we estimated a time-lag of 19 days between hospitalisation and swab positivity, and 26 days between deaths and swab positivity. By late-2021/early-2022 these time-lags had decreased to 7 days for hospitalisations, and 18 days for deaths. ConclusionEven though many populations have high levels of immunity to SARS-CoV-2 from vaccination and natural infection, waning of immunity and variant emergence will continue to be an upwards pressure on IHR and IFR. As investments in community surveillance are scaled back, alternative methods should be developed to accurately track the ever changing relationship between infection, hospitalisation and death.


Subject(s)
COVID-19 , Death
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.02.22275900

ABSTRACT

BackgroundFollowing rapidly rising COVID-19 case numbers, England entered a national lockdown on 6 January 2021, with staged relaxations of restrictions from 8 March 2021 onwards. AimWe characterise how the lockdown and subsequent easing of restrictions affected trends in SARS-CoV-2 infection prevalence. MethodsOn average, risk of infection is proportional to infection prevalence. The REal-time Assessment of Community Transmission-1 (REACT-1) study is a repeat cross-sectional study of over 98,000 people every round (rounds approximately monthly) that estimates infection prevalence in England. We used Bayesian P-splines to estimate prevalence and the time-varying reproduction number (Rt) nationally, regionally and by age group from round 8 (beginning 6 January 2021) to round 13 (ending 12 July 2021) of REACT-1. As a comparator, a separate segmented-exponential model was used to quantify the impact on Rt of each relaxation of restrictions. ResultsFollowing an initial plateau of 1.54% until mid-January, infection prevalence decreased until 13 May when it reached a minimum of 0.09%, before increasing until the end of the study to 0.76%. Following the first easing of restrictions, which included schools reopening, the reproduction number Rt increased by 82% (55%, 108%), but then decreased by 61% (82%, 53%) at the second easing of restrictions, which was timed to match the Easter school holidays. Following further relaxations of restrictions, the observed Rt increased steadily, though the increase due to these restrictions being relaxed was masked by the effects of vaccination and the rapid rise of Delta. There was a high degree of synchrony in the temporal patterns of prevalence between regions and age groups. ConclusionHigh-resolution prevalence data fitted to P-splines allowed us to show that the lockdown was highly effective at reducing risk of infection with school holidays/closures playing a significant part.


Subject(s)
COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.29.22273042

ABSTRACT

Summary The SARS-CoV-2 pandemic has been characterised by the regular emergence of genomic variants which have led to substantial changes in the epidemiology of the virus. With natural and vaccine-induced population immunity at high levels, evolutionary pressure favours variants better able to evade SARS-CoV-2 neutralising antibodies. The Omicron variant was first detected in late November 2021 and exhibited a high degree of immune evasion, leading to increased infection rates in many countries. However, estimates of the magnitude of the Omicron wave have relied mainly on routine testing data, which are prone to several biases. Here we infer the dynamics of the Omicron wave in England using PCR testing and genomic sequencing obtained by the REal-time Assessment of Community Transmission-1 (REACT-1) study, a series of cross-sectional surveys testing random samples of the population of England. We estimate an initial peak in national Omicron prevalence of 6.89% (5.34%, 10.61%) during January 2022, followed by a resurgence in SARS-CoV-2 infections in England during February-March 2022 as the more transmissible Omicron sub-lineage, BA.2 replaced BA.1 and BA.1.1. Assuming the emergence of further distinct genomic variants, intermittent epidemics of similar magnitude as the Omicron wave may become the ‘new normal’.


Subject(s)
COVID-19
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.04.22270426

ABSTRACT

The time-varying reproduction number ( R t ) can change rapidly over the course of a pandemic due to changing restrictions, behaviours, and levels of population immunity. Many methods exist that allow the estimation of R t from case data. However, these are not easily adapted to point prevalence data nor can they infer R t across periods of missing data. We developed a Bayesian P-spline model suitable for fitting to a wide range of epidemic time-series, including point-prevalence data. We demonstrate the utility of the model by fitting to periodic daily SARS-CoV-2 swab-positivity data in England from the first 7 rounds (May 2020 – December 2020) of the REal-time Assessment of Community Transmission-1 (REACT-1) study. Estimates of R t over the period of two subsequent rounds (6-8 weeks) and single rounds (2-3 weeks) inferred using the Bayesian P-spline model were broadly consistent with estimates from a simple exponential model, with overlapping credible intervals. However, there were sometimes substantial differences in point estimates. The Bayesian P-spline model was further able to infer changes in R t over shorter periods tracking a temporary increase above one during late-May 2020, a gradual increase in R t over the summer of 2020 as restrictions were eased, and a reduction in R t during England’ s second national lockdown followed by an increase as the Alpha variant surged. The model is robust against both under-fitting and over-fitting and is able to interpolate between periods of available data; it is a particularly versatile model when growth rate can change over small timescales, as in the current SARS-CoV-2 pandemic. This work highlights the importance of pairing robust methods with representative samples to track pandemics.

5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.22.21268252

ABSTRACT

Background The highest-ever recorded numbers of daily severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in England has been observed during December 2021 and have coincided with a rapid rise in the highly transmissible Omicron variant despite high levels of vaccination in the population. Although additional COVID-19 measures have been introduced in England and internationally to contain the epidemic, there remains uncertainty about the spread and severity of Omicron infections among the general population. Methods The REal-time Assessment of Community Transmission–1 (REACT-1) study has been monitoring the prevalence of SARS-CoV-2 infection in England since May 2020. REACT-1 obtains self-administered throat and nose swabs from a random sample of the population of England at ages 5 years and over. Swabs are tested for SARS-CoV-2 infection by reverse transcription polymerase chain reaction (RT-PCR) and samples testing positive are sent for viral genome sequencing. To date 16 rounds have been completed, each including ∼100,000 or more participants with data collected over a period of 2 to 3 weeks per month. Socio-demographic, lifestyle and clinical information (including previous history of COVID-19 and symptoms prior to swabbing) is collected by online or telephone questionnaire. Here we report results from round 14 (9-27 September 2021), round 15 (19 October - 05 November 2021) and round 16 (23 November - 14 December 2021) for a total of 297,728 participants with a valid RT-PCR test result, of whom 259,225 (87.1%) consented for linkage to their NHS records including detailed information on vaccination (vaccination status, date). We used these data to estimate community prevalence and trends by age and region, to evaluate vaccine effectiveness against infection in children ages 12 to 17 years, and effect of a third (booster) dose in adults, and to monitor the emergence of the Omicron variant in England. Results We observed a high overall prevalence of 1.41% (1.33%, 1.51%) in the community during round 16. We found strong evidence of an increase in prevalence during round 16 with an estimated reproduction number R of 1.13 (1.06, 1.09) for the whole of round 16 and 1.27 (1.14, 1.40) when restricting to observations from 1 December onwards. The reproduction number in those aged 18-54 years was estimated at 1.23 (1.14, 1.33) for the whole of round 16 and 1.41 (1.23, 1.61) from 1 December. Our data also provide strong evidence of a steep increase in prevalence in London with an estimated R of 1.62 (1.34, 1.93) from 1 December onwards and a daily prevalence reaching 6.07% (4.06%, 9.00%) on 14 December 2021. As of 1 to 11 December 2021, of the 275 lineages determined, 11 (4.0%) corresponded to the Omicron variant. The first Omicron infection was detected in London on 3 December, and subsequent infections mostly appeared in the South of England. The 11 Omicron cases were all aged 18 to 54 years, double-vaccinated (reflecting the large numbers of people who have received two doses of vaccine in this age group) but not boosted, 9 were men, 5 lived in London and 7 were symptomatic (5 with classic COVID-19 symptoms: loss or change of sense of smell or taste, fever, persistent cough), 2 were asymptomatic, and symptoms were unknown for 2 cases. The proportion of Omicron (vs Delta or Delta sub-lineages) was found to increase rapidly with a daily increase of 66.0% (32.7%, 127.3%) in the odds of Omicron (vs. Delta) infection, conditional on swab positivity. Highest prevalence of swab positivity by age was observed in (unvaccinated) children aged 5 to 11 years (4.74% [4.15%, 5.40%]) similar to the prevalence observed at these ages in round 15. In contrast, prevalence in children aged 12 to 17 years more than halved from 5.35% (4.78%, 5.99%) in round 15 to 2.31% (1.91%, 2.80%) in round 16. As of 14 December 2021, 76.6% children at ages 12 to 17 years had received at least one vaccine dose; we estimated that vaccine effectiveness against infection was 57.9% (44.1%, 68.3%) in this age group. In addition, the prevalence of swab positivity in adults aged 65 years and over fell by over 40% from 0.84% (0.72%, 0.99%) in round 15 to 0.48% (0.39%,0.59%) in round 16 and for those aged 75 years and over it fell by two-thirds from 0.63% (0.48%,0.82%) to 0.21% (0.13%,0.32%). At these ages a high proportion of participants (>90%) had received a third vaccine dose; we estimated that adults having received a third vaccine dose had a three- to four-fold lower risk of testing positive compared to those who had received two doses. Conclusion A large fall in swab positivity from round 15 to round 16 among 12 to 17 year olds, most of whom have been vaccinated, contrasts with the continuing high prevalence among 5 to 11 year olds who have largely not been vaccinated. Likewise there were large falls in swab positivity among people aged 65 years and over, the vast majority of whom have had a third (booster) vaccine dose; these results reinforce the importance of the vaccine and booster campaign. However, the rapidly increasing prevalence of SARS-CoV-2 infections in England during December 2021, coincident with the rapid rise of Omicron infections, may lead to renewed pressure on health services. Additional measures beyond vaccination may be needed to control the current wave of infections and prevent health services (in England and other countries) from being overwhelmed. Summary The unprecedented rise in SARS-CoV-2 infections is concurrent with rapid spread of the Omicron variant in England and globally. We analysed prevalence of SARS-CoV-2 and its dynamics in England from end of November to mid-December 2021 among almost 100,000 participants from the REACT-1 study. Prevalence was high during December 2021 with rapid growth nationally and in London, and of the proportion of infections due to Omicron. We observed a large fall in swab positivity among mostly vaccinated older children (12-17 years) compared with unvaccinated younger children (5-11 years), and in adults who received a third vs. two doses of vaccine. Our results reiterate the importance of vaccination and booster campaigns; however, additional measures may be needed to control the rapid growth of the Omicron variant.


Subject(s)
Coronavirus Infections , Fever , Severe Acute Respiratory Syndrome , COVID-19
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.17.21267925

ABSTRACT

Since the emergence of SARS-CoV-2, evolutionary pressure has driven large increases in the transmissibility of the virus. However, with increasing levels of immunity through vaccination and natural infection the evolutionary pressure will switch towards immune escape. Here we present phylogenetic relationships and lineage dynamics within England (a country with high levels of immunity), as inferred from a random community sample of individuals who provided a self-administered throat and nose swab for rt-PCR testing as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. From 9 to 27 September 2021 (round 14) and 19 October to 5 November 2021 (round 15), all lineages sequenced within REACT-1 were Delta or a Delta sub-lineage with 44 unique lineages identified. The proportion of the original Delta variant (B.1.617.2) was found to be increasing between September and November 2021, which may reflect an increasing number of sub-lineages which have yet to be identified. The proportion of B.1.617.2 was greatest in London, which was further identified as a region with an increased level of genetic diversity. The Delta sub-lineage AY.4.2 was found to be robustly increasing in proportion, with a reproduction number 15% (8%, 23%) greater than its parent and most prevalent lineage, AY.4. Both AY.4.2 and AY.4 were found to be geographically clustered in September but this was no longer the case by late October/early November, with only the lineage AY.6 exhibiting clustering towards the South of England. Though no difference in the viral load based on cycle threshold (Ct) values was identified, a lower proportion of those infected with AY.4.2 had symptoms for which testing is usually recommend (loss or change of sense of taste, loss or change of sense of smell, new persistent cough, fever), compared to AY.4 (p = 0.026). The evolutionary rate of SARS-CoV-2, as measured by the mutation rate, was found to be slowing down during the study period, with AY.4.2 further found to have a reduced mutation rate relative to AY.4. As SARS-CoV-2 moves towards endemicity and new variants emerge, genomic data obtained from random community samples can augment routine surveillance data without the potential biases introduced due to higher sampling rates of symptomatic individuals.


Subject(s)
Fever , Cough
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.14.21267806

ABSTRACT

Background It has been nearly a year since the first vaccinations against SARS-CoV-2 were delivered in England. The third wave of COVID-19 in England began in May 2021 as the Delta variant began to outcompete and largely replace other strains. The REal-time Assessment of Community Transmission-1 (REACT-1) series of community surveys for SARS-CoV-2 infection has provided insights into transmission dynamics since May 2020. Round 15 of the REACT-1 study was carried out from 19 October to 5 November 2021. Methods We estimated prevalence of SARS-CoV2 infection and used multiple logistic regression to analyse associations between SARS-CoV-2 infection in England and demographic and other risk factors, based on RT-PCR results from self-administered throat and nose swabs in over 100,000 participants. We estimated (single-dose) vaccine effectiveness among children aged 12 to 17 years, and among adults compared swab-positivity in people who had received a third (booster) dose with those who had received two vaccine doses. We used splines to analyse time trends in swab-positivity. Results During mid-October to early-November 2021, weighted prevalence was 1.57% (1.48%, 1.66%) compared to 0.83% (0.76%, 0.89%) in September 2021 (round 14). Weighted prevalence increased between rounds 14 and 15 across most age groups (including older ages, 65 years and over) and regions, with average reproduction number across rounds of R=1.09 (1.08, 1.11). During round 15, there was a fall in prevalence from a maximum around 20-21 October, with an R of 0.76 (0.70, 0.83), reflecting falls in prevalence at ages 17 years and below and 18 to 54 years. School-aged children had the highest weighted prevalence of infection: 4.95% (4.39%, 5.58%) in those aged 5 to 12 years and 5.21% (4.61%, 5.87%) in those aged 13 to 17 years. In multiple logistic regression, age, sex, key worker status and presence of one or more children in the home were associated with swab positivity. There was evidence of heterogeneity between rounds in swab positivity rates among vaccinated individuals at ages 18 to 64 years, and differences in key demographic and other variables between vaccinated and unvaccinated adults at these ages. Vaccine effectiveness against infection in children was estimated to be 56.2% (41.3%, 67.4%) in rounds 13, 14 and 15 combined, adjusted for demographic factors, with a similar estimate obtained for round 15 only. Among adults we found that those who received a third dose of vaccine were less likely to test positive compared to those who received only two vaccine doses, with adjusted odds ratio (OR) =0.38 (0.26, 0.55). Discussion Swab-positivity was very high at the start of round 15, reaching a maximum around 20 to 21 October 2021, and then falling through late October with an uncertain trend in the last few days of data collection. The observational nature of survey data and the relatively small proportion of unvaccinated adults call into question the comparability of vaccinated and unvaccinated groups at this relatively late stage in the vaccination programme. However, third vaccine doses for eligible adults and the vaccination of children aged 12 years and over are associated with lower infection risk and, thus, remain a high priority (with possible extension to children aged 5-12 years). These should help reduce SARS-CoV-2 transmission during the winter period when healthcare demands typically rise.


Subject(s)
COVID-19
8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.21.21259254

ABSTRACT

ABSTRACT Background Seroprevalence studies in key worker populations are essential to understand the epidemiology of SARS-CoV-2. Various technologies, including laboratory assays and point-of-care self-tests, are available for antibody testing. The interpretation of seroprevalence studies requires comparative data on the performance of antibody tests. Methods In June 2020, current and former members of the UK Police forces and Fire service performed a self-test lateral flow immunoassay (LFIA) and provided a saliva sample, nasopharyngeal swab, venous blood samples for Abbott ELISA and had a nurse performed LFIA. We present the prevalence of PCR positivity and antibodies to SARS-CoV-2 in this cohort following the first wave of infection in England; the acceptability and usability of self-test LFIAs (defined as use of the LFIA kit and provision of a valid result, respectively); and determine the sensitivity and specificity of LFIAs compared to laboratory ELISAs. Results In this cohort of non-healthcare key workers, 7.4% (396/5,348; 95% CI, 6.7-8.1) were antibody positive. Seroprevalence was 8.9% (6.9-11.4) in those under 40 years, 11.5% (8.8-15.0) in those of non-white British ethnicity and 7.8% (7.1-8.7) in those currently working. The self-test LFIA had an acceptability of 97.7% and a usability of 90.0%. There was substantial agreement between within-participant LFIA results (kappa 0.80; 0.77-0.83). The LFIAs (self-test and nurse-performed) had a similar performance: compared to ELISA, sensitivity was 82.1% (77.7-86.0) self-test and 76.4% (71.9-80.5) nurse-performed with specificity of 97.8% (97.3-98.2) and 98.5% (98.1-98.8) respectively. Conclusion A greater proportion of the non-healthcare key worker cohort showed evidence of previous infection with SARS-CoV-2 than the general population at 6.0% (5.8-6.1) following the first wave in England. The high acceptability and usability reported by participants and the similar performance of self-test and nurse-performed LFIAs indicate that the self-test LFIA is fit for purpose for home-testing in occupational and community prevalence studies.

9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.15.21257351

ABSTRACT

ABSTRACT Background Quick, cheap and accurate point-of-care testing is urgently needed to enable frequent, large-scale testing to contain COVID-19. Lateral flow tests for antigen and antibody detection are an obvious candidate for use in community-wide testing, because they are quick and cheap relative to lab-processed tests. However, their low accuracy has limited their adoption. We develop a new methodology to increase the diagnostic accuracy of a combination of cheap, quick and inaccurate index tests with correlated or discordant outcomes, and illustrate its performance on commercially available lateral flow immunoassays (LFIAs) for Sars-CoV-2 antibody detection. Methods and Findings We analyze laboratory test outcomes of 300 serum samples from health care workers detected with PCR-confirmed SARS-Cov-2 infection at least 21 days prior to sample collection, and 500 pre-pandemic serum samples, from a national seroprevalence survey, tested using eight LFIAs (Abbott, Biosure/Mologic, Orientgene-Menarini, Fortress, Biopanda I, Biopanda II, SureScreen and Wondfo) and Hybrid DABA as reference test. For each of 14 two-test combinations (e.g., Abbott, Fortress) and 16 three-test combinations (e.g., Abbott, Fortress, Biosure/Mologic) used on at least 100 positive and 100 negative samples, we classify an outcome sequence – e.g., (+,–) for (Abbott, Fortress) – as positive if its combination positive predictive value (CPPV) exceeds a given threshold, set between 0 and 1. Our main outcome measures are the sensitivity and specificity of different classification rules for classifying the outcomes of a combination test. We define testing possibility frontiers which represent sensitivity and false positive rates for different thresholds. The envelope of frontiers further enables test selection. The eight index tests individually meet neither the UK Medicines and Healthcare Products Regulatory Agency’s 98% sensitivity and 98% specificity criterion, nor the US Center for Disease Control’s 99.5% specificity criterion. Among these eight tests, the highest single-test LFIA specificity is 99.4% (with a sensitivity of 65.2%) and the highest single-test LFIA sensitivity is 93.4% (with a specificity of 97.4%). Using our methodology, a two-test combination meets the UK Medicines and Healthcare Products Regulatory Agency’s criterion, achieving sensitivity of 98.4% and specificity of 98.0%. While two-test combinations meeting the US Center for Disease Control’s 99.5% specificity criterion have sensitivity below 83.6%, a three-test combination delivers a specificity of 99.6% and a sensitivity of 95.8%. Conclusions Current CDC guidelines suggest combining tests, noting that “performance of orthogonal testing algorithms has not been systematically evaluated” and highlighting discordant outcomes. Our methodology combines available LFIAs to meet desired accuracy criteria, by identifying testing possibility frontiers which encompass benchmarks, enabling cost savings. Our methodology applies equally to antigen testing and can greatly expand testing capacity through combining less accurate tests, especially for use cases needing quick, accurate tests, e.g., entry to public spaces such as airports, nursing homes or hospitals.


Subject(s)
COVID-19 , Hereditary Angioedema Types I and II
10.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3861633

ABSTRACT

Background: Sleep quality is crucial for health and wellbeing in all ages and sleep abnormalities may contribute to multimorbidity in older adults. The impact of pandemic-related disruptions to sleep quality in older adults, particularly those deemed “clinically extremely vulnerable” to COVID-19-related complications (COVID-19CEV) remains unknown.Methods: In this cross-sectional study, conducted during the first UK lockdown (April- June 2020), we surveyed 5558 adults aged 50 years and over (of whom 523 met criteria for COVID-19CEV) with assessments of sleep quality, health/medical, lifestyle, psychosocial and sociodemographic factors. We identified associations between these factors and sleep quality and explored interactions of COVID-19CEV status with factors significantly associated with sleep quality to identify potential moderating variables.Findings: 37% of participants reported poor sleep quality which was associated with younger age, female sex and multimorbidity. Significant associations with poor sleep included, among health/medical factors: COVID-19CEV status, higher BMI, arthritis, pulmonary disease, and mental health disorders; .and the following lifestyle and psychosocial factors: living alone, higher alcohol consumption, an unhealthy diet and higher depressive and anxiety symptoms. r Moderators of the COVID-19CEV status - sleep quality relationship included marital status, loneliness, anxiety and diet. Within this subgroup, less anxious and less lonely males, as well as females with healthier diets, reported better sleep quality. Interpretation: Sleep quality in older adults was compromised during the sudden unprecedented nation-wide lockdown due to distinct health/medical, lifestyle and psychosocial factors. Male and female older adults with COVID-19CEV status may benefit from targeted mental health and dietary interventions, respectively. Results inform tailored interventions and policy for older adults deemed COVID-19CEV. Funding Information: This study was sponsored by Imperial College London and partly funded by the ICHT BRC.Declaration of Interests: Dr. Middleton reports clinical trial grants from Janssen R&D, Novartis and Takeda outside the submitted work. All authors declare no competing interests related to this study.Ethics Approval Statement: Data collected as in this study are anonymized and kept strictlyconfidential in accordance with the UK General Data Protection Regulations (2016). The CCRR study was ethically approved by the Imperial College London Joint Research Compliance Office (20IC5942) and by the Health Research Authority (16/EM/0213).


Subject(s)
Anxiety Disorders , Joint Diseases , Arthritis , COVID-19 , Parasomnias
11.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.13.21257144

ABSTRACT

BackgroundNational epidemic dynamics of SARS-CoV-2 infections are being driven by: the degree of recent indoor mixing (both social and workplace), vaccine coverage, intrinsic properties of the circulating lineages, and prior history of infection (via natural immunity). In England, infections, hospitalisations and deaths fell during the first two steps of the "roadmap" for exiting the third national lockdown. The third step of the roadmap in England takes place on 17 May 2021. MethodsWe report the most recent findings on community infections from the REal-time Assessment of Community Transmission-1 (REACT-1) study in which a swab is obtained from a representative cross-sectional sample of the population in England and tested using PCR. Round 11 of REACT-1 commenced self-administered swab-collection on 15 April 2021 and completed collections on 3 May 2021. We compare the results of REACT-1 round 11 to round 10, in which swabs were collected from 11 to 30 March 2021. ResultsBetween rounds 10 and 11, prevalence of swab-positivity dropped by 50% in England from 0.20% (0.17%, 0.23%) to 0.10% (0.08%, 0.13%), with a corresponding R estimate of 0.90 (0.87, 0.94). Rates of swab-positivity fell in the 55 to 64 year old group from 0.17% (0.12%, 0.25%) in round 10 to 0.06% (0.04%, 0.11%) in round 11. Prevalence in round 11 was higher in the 25 to 34 year old group at 0.21% (0.12%, 0.38%) than in the 55 to 64 year olds and also higher in participants of Asian ethnicity at 0.31% (0.16%, 0.60%) compared with white participants at 0.09% (0.07%, 0.11%). Based on sequence data for positive samples for which a lineage could be identified, we estimate that 92.3% (75.9%, 97.9%, n=24) of infections were from the B.1.1.7 lineage compared to 7.7% (2.1%, 24.1%, n=2) from the B.1.617.2 lineage. Both samples from the B.1.617.2 lineage were detected in London from participants not reporting travel in the previous two weeks. Also, allowing for suitable lag periods, the prior close alignment between prevalence of infections and hospitalisations and deaths nationally has diverged. DiscussionWe observed marked reductions in prevalence from March to April and early May 2021 in England reflecting the success of the vaccination programme and despite easing of restrictions during lockdown. However, there is potential upwards pressure on prevalence from the further easing of lockdown regulations and presence of the B.1.617.2 lineage. If prevalence rises in the coming weeks, policy-makers will need to assess the possible impact on hospitalisations and deaths. In addition, consideration should be given to other health and economic impacts if increased levels of community transmission occur.


Subject(s)
COVID-19
12.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.26.21252512

ABSTRACT

Abstract Background England has experienced high rates of SARS-CoV-2 infection during the COVID-19 pandemic, affecting in particular minority ethnic groups and more deprived communities. A vaccination programme began in England in December 2020, with priority given to administering the first dose to the largest number of older individuals, healthcare and care home workers. Methods A cross-sectional community survey in England undertaken between 26 January and 8 February 2021 as the fifth round of the REal-time Assessment of Community Transmission-2 (REACT-2) programme. Participants completed questionnaires, including demographic details and clinical and COVID-19 vaccination histories, and self-administered a lateral flow immunoassay (LFIA) test to detect IgG against SARS-CoV-2 spike protein. There were sufficient numbers of participants to analyse antibody positivity after 21 days from vaccination with the PfizerBioNTech but not the AstraZeneca/Oxford vaccine which was introduced slightly later. Results The survey comprised 172,099 people, with valid IgG antibody results from 155,172. The overall prevalence of antibodies (weighted to be representative of the population of England and adjusted for test sensitivity and specificity) in England was 13.9% (95% CI 13.7, 14.1) overall, 37.9% (37.2, 38.7) in vaccinated and 9.8% (9.6, 10.0) in unvaccinated people. The prevalence of antibodies (weighted) in unvaccinated people was highest in London at 16.9% (16.3, 17.5), and higher in people of Black (22.4%, 20.8, 24.1) and Asian (20.0%, 19.0, 21.0) ethnicity compared to white (8.5%, 8.3, 8.7) people. The uptake of vaccination by age was highest in those aged 80 years or older (93.5%). Vaccine confidence was high with 92.0% (91.9, 92.1) of people saying that they had accepted or intended to accept the offer. Vaccine confidence varied by age and ethnicity, with lower confidence in young people and those of Black ethnicity. Particular concerns were identified around pregnancy, fertility and allergies. In 971 individuals who received two doses of the Pfizer-BioNTech vaccine, the proportion testing positive was high across all age groups. Following a single dose of Pfizer-BioNTech vaccine after 21 days or more, 84.1% (82.2, 85.9) of people under 60 years tested positive (unadjusted) with a decreasing trend with increasing age, but high responses to a single dose in those with confirmed or suspected prior COVID at 90.1% (87.2, 92.4) across all age groups. Conclusions There is uneven distribution of SARS-CoV-2 antibodies in the population with a higher burden in key workers and some minority ethnic groups, similar to the pattern in the first wave. Confidence in the vaccine programme is high overall although it was lower in some of the higher prevalence groups which suggests the need for improved communication about specific perceived risks. Two doses of Pfizer-BioNTech vaccine, or a single dose following previous infection, confers high levels of antibody positivity across all ages. Further work is needed to understand the relationship between antibody positivity, clinical outcomes such as hospitalisation, and transmission.


Subject(s)
COVID-19 , Drug Hypersensitivity
13.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.30.20239806

ABSTRACT

Background The second wave of the 2020 COVID-19 pandemic in England has been characterized by high growth and prevalence in the North with lower prevalence in the South. High prevalence was first observed at younger adult ages before spreading out to school-aged children and older adults. Local tiered interventions were in place up to 5th November 2020 at which time a second national lockdown was implemented. Methods REACT-1 is a repeated cross-sectional survey of SARS-CoV-2 swab-positivity in random samples of the population of England. The current period of data collection (round 7) commenced on 13th November 2020 and we report interim results here for swabs collected up to and including 24th November 2020. Because there were two distinct periods of growth during the previous round 6, here we compare results from round 7 (mainly) with the second half of round 6, which obtained swabs between 26th October and 2nd November 2020. We report prevalence both unweighted and reweighted to be representative of the population of England. We describe trends in unweighted prevalence with daily growth rates, doubling times, reproduction numbers (R) and splines. We estimated odds ratios for swab-positivity using mutually-adjusted multivariable logistic regression models. Results We found 821 positives from 105,123 swabs giving an unweighted prevalence of 0.78% (95% CI, 0.73%, 0.84%) and a weighted prevalence of 0.96% (0.87%, 1.05%). The weighted prevalence estimate was ∼30% lower than that of 1.32% (1.20%, 1.45%) obtained in the second half of round 6. This decrease corresponds to a halving time of 37 (30, 47) days and an R number of 0.88 (0.86, 0.91). Using only data from the most recent period, we estimate an R number of 0.71 (0.54, 0.90). A spline fit to prevalence showed a rise shortly after the previous period of data collection followed by a fall coinciding with the start of lockdown. The national trends were driven mainly by reductions in higher-prevalence northern regions, with prevalence approximately unchanged in the Midlands and London, and smaller reductions in southern lower-prevalence regions. Sub-regional analyses showed variable changes in prevalence at the local level including marked declines in the North, but also local areas of growth in East and West Midlands. Mutually adjusted models in the most recent period indicated: people of Asian ethnicity, those living in the most deprived neighbourhoods, and those living in the largest households, had higher odds of swab-positivity. Conclusion Three weeks into the second national lockdown in England there has been a ∼30% proportionate reduction in prevalence overall, with greater reductions in the North. As a result, inter-regional heterogeneity has reduced, although average absolute prevalence remains high at ∼1%. Continued monitoring of the epidemic in the community remains essential until prevalence is reliably suppressed to much lower levels, for example, through widespread vaccination.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL